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Multi-Walled Microchannels: Free-Standing Porous
Silicon Membranes for Use in ;' TAS

R. Willem Tjerkstra, Johannes G. E. Gardeniers, John J. Kelly, and Albert van den Berg

Abstract—Electrochemically formed porous silicon (PS) can
be released from the bulk silicon substrate by underetching at
increased current density. Using this technique, two types of
channels containing free-standing layers of PS were constructed,
which were called multi-walled microchannels (MW g Cs). They
can be used in devices like microsieves, microbatteries, and
porous electrodes. Two types of MW .C were made: the “conven-
tional” version, consisting of two or more coaxially constructed
microchannels separated by a suspended PS membrane, and
the buried variety, where a PS membrane is suspended halfway
an etched cavity surrounded by silicon nitride walls. The latter
is more robust. The pore size of the PS was measured using
transmission electron microscopy and field emission gun scanning
electron microscopy (FEGSEM) and found to be of the order of 7
nm. [462]

Index Terms—ZElectrochemical etching, microsieve, pore size,
porous silicon, silicon micromachining.

1. INTRODUCTION

N MICROMECHANICS, porous silicon (PS) has been used
for a number of purposes. It is frequently utilized as a sacri-
ficial material because it can be formed by highly selective elec-
trochemical processes and can be etched away using relatively
harmless solutions like photoresist developer [1]-[4]. The large
surface area of PS and its relative inertness make it an ideal ma-
terial to increase the area of an analytical device [5]. Oxidized
PS has also been used as an insulating material in gas sensors
[6], whereas metallized PS can be used in microelectronics [7].
PS layers can be released from the bulk substrate by
increasing the current density during the electrochemical
formation. This phenomenon has been used by Kanemitsu to
study the optical properties of PS layers [8]. If the PS can be
fixed locally to a rigid support, many new applications become
possible. In this paper, the formation of such structures, which
we call multi-walled microchannels (MW uCs), is described.
These are channels containing one or more free-hanging layers
of PS attached to some material. The structures can be used
as for instance porous electrodes or as sieves, but many other
applications are feasible. Unlike materials such as aluminum
oxide or zeolites, these structures can be directly incorporated
in a micro total analysis system (4 TAS) design at precisely the
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right place and with adjustable pore sizes, in a one-run process.
This makes the MW 1,Cs very promising for ;s TAS applications.

In this paper, the formation of MW uCs is described. Two
designs were made: a simple channel containing a porous layer
suspended by the mask material, and a buried PS layer. The
latter design is more robust and therefore has more potential in
a device. Attempts were made to measure the pore sizes of the
PS layers.

II. PS FORMATION AND PROPERTIES

Since its discovery by Uhlir [9] in 1956, PS has been the sub-
ject of intense research. Its chemical composition and structure
have been thoroughly studied [10]-[14]. More recently, the dis-
covery of strong visible luminescence from PS at room temper-
ature by Canham [15] in 1990 initiated many investigations into
the optical properties of this material [8], [16], [17]. The me-
chanical properties of PS have also been thoroughly studied [3],
[18]-[20].

PS can be made by anodically etching p-type silicon in fluo-
ride containing solutions using a current density lower than that
of the first peak in the current-potential curve [21]. The height
and place of the first current peak depends on the fluoride con-
centration, the hydrodynamics of the system, and the resistivity
of the wafers. The current density during formation of PS can
be up to 100 mA/cm?, depending on the desired pore size and
the fluoride concentration. At potentials higher than the peak,
potential electropolishing will occur. The pore size and porosity
can be measured using, for instance, TEM pictures [13] and ad-
sorption isotherms [22], [23]. The pore sizes reported in refs.
[22] and [23] vary between 2—-11 nm, depending on the hy-
drogen flouride (HF) concentration and the current density: the
higher the HF concentration and the lower the current density,
the smaller the pore size and the porosity will be. The porosity of
PS formed from heavily doped p-Si at 10% HF and 10 mA/cm?
is around 70% [23]. The porosity of PS formed from lightly
doped silicon under the same conditions is much higher. Ac-
cording to Smith et al. [24], the rate of formation of PS depends
on the hole flux from the bulk to the substrate surface.

The doping density of the substrate has a significant effect
on the 3-D structure of the PS [13]. PS etched in heavily doped
substrates exhibits a structure with long, branched pores. This
PS has a reasonably large mechanical strength. In lightly doped
substrates, the PS formed looks like a conglomeration of very
tiny bubbles. The mechanical strength is considerably lower
[23]. Free-standing PS can be made by first etching in the PS
range, and subsequently increasing the current density to the
electropolishing range [8], [24]. Fig. 1 shows how a MWnC
can be made. A channel is etched under a mask using a high
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Fig. 1. Process scheme for creating the MW Cs. (a) Etch channel. (b) Form
PS. (¢) Underetch PS.

current density Fig. 1(a). In the polishing range, the etching is
mass-transport controlled and therefore isotropic. This results
in rounded profiles, as shown. After a certain time, the current
density is lowered and a porous layer is formed Fig. 1(b). Sub-
sequently, the current density is increased and the porous layer
is underetched Fig. 1(c). Because it is still connected to the
mask material, it is now a part of an MW C. The dimensions
of the channels can be controlled by the etch time and the mask
opening. Instead of first etching a channel, it is also possible
to first etch the PS and afterwards underetch it at a high current
density. A channel covered with a flat layer of PS is then formed.
Another possibility is etching the channel anisotropically using
KOH or RIE-etching to get different shapes. After defining the
shape of the PS, a MW uC can be etched using the method de-

scribed. It is possible to subsequently close the mask opening
by growing a layer of, for instance, silicon nitride that is thick
enough to fill the mask opening. Of course, the pores of the PS
will also be closed in this way. Instead of closing the mask, one
can also choose to modify the PS by for example coating it with
a metal layer [7] or nitridation [25].

III. EXPERIMENTS AND RESULTS

A. Fabrication of MWuCs

1) Conventional Version: We made MWuCs by etching
channels in a p-type silicon wafer, using LPCVD silicon-rich
silicon nitride as a mask material. The wafers used were
p-type {100} boron-doped, with a resistivity of 0.01-0.018
Qcm (Wacker). They were covered with 500-nm LPCVD
silicon-rich silicon nitride. Before deposition of the silicon
nitride layer, the wafers were dipped in 1% HF (from 50%
HF, Merck VLSI selectipur, diluted with DI water) to remove
the native oxide layer. The silicon nitride on the backside of
the wafers was removed using an RIE process, and a layer of
750-nm aluminum was evaporated and annealed for 30 min in
a water-vapor rich atmosphere at 450 °C. The silicon nitride on
the front side of the wafer was patterned using photolitography
and RIE. The samples were etched in an aqueous 5% HF so-
lution, using an EG&G 366-A potentiostat as a current source
and an Orion 900 600 Ag/AgCl double-junction HF-resistant
reference electrode, using the process shown in Fig. 1.

First, a channel was etched at a potential of 3 V versus
Ag/AgCl (current density 180 mA/cm?) for about 10 min. The
rate of formation of the channel is in the order of 1 pm/min.
Because the etching for these channels is isotropic, the etch
rate not only depends on the HF concentration and the current
density, but also on the local structure density [26]. After
etching the channel, the potential was switched to 0 V versus
Ag/AgCl and the sample was etched for 15 min (current density
40 mA/cm?). A layer of PS was formed on the channel wall,
with a rate of around 0.3 pm/min. We found that under the
conditions we used the maximum thickness of the PS was
around 10 pm. After this thickness was reached, the PS began
to crack and peel off the surface, presumably due to internal
stress. In the final step, the PS was etched free by switching
the potential back to 3 V and etching for another 15 min. The
etch rate of the silicon beneath the PS wall depends mainly on
the rate of diffusion of the reactants through this wall, and can
be quite low (around 0.1 pm/min). After etching, the samples
were rinsed with deionized water and dried on air.

The PS made this way has small pores. The direction of the
pores was found to be independent of the crystal lattice. This is
in disagreement with the results of other researchers, who found
a dependence of the pore direction on the crystal lattice [17],
[24], [27].

In Fig. 2, a MW C created with the method described above
is shown. By repeatedly switching the potential to high and low
values, multiple free-standing walls were made. It is also pos-
sible to make a flat porous layer by first etching at a low current
density region, and subsequently increasing the current density
to produce the channel. The main problem in making devices
using the technique described above is the reproducability of
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Fig. 2. SEM photograph of a MWy C containing two porous layers.

the attachment of the PS to the mask material. The porous Si
can tear off because of the presence of a thin layer of native
oxide between the mask and the silicon wafer that will be etched
away in the HF solution. Another cause of detachment can be
the fact that the PS has a larger lattice constant than bulk silicon
[28], leading to stress in the PS/mask interface. The larger lat-
tice constant can be caused by oxidation of the PS surface. The
breaking of the PS can also be caused by stress due to capillary
effects during the drying of the sample. A fourth cause may be
the bending of the mask material due to intrinsic stress. This can
be diminished by defining the channels by a row of holes rather
than a slit in the mask material. In Fig. 1(b), a channel made
using a slit in the mask material is shown. The mask material
is bent upwards. Using a row of holes instead of a slit prevents
this (Fig. 2). Another possible solution for this problem is the
use of a different LPCVD process. At the moment, we do not
know which of the above-mentioned phenomena is the most im-
portant cause for breaking. In an attempt to solve the problems
described above, a totally new design was made which increases
the strength of the structure considerably. In the next sections,
this design will be described.

2) Buried PS Layers: In a usable design of an MWuC, it
must be possible to make stable connections to the structure. In
our view, the key to the solution of this problem is that the flexi-
bility of the support of the PS to the substrate must be minimized
to prevent the PS from breaking.

A design that has these characteristics is shown in Fig. 3. It
consists of a silicon nitride “pipe” in which the PS is formed.
This structure has several advantages over the previously de-
scribed structures. The silicon nitride walls are fixed to the bulk
silicon so they cannot move. Because the PS is attached to arigid
surface, it is much less vulnerable and connections can easily
be made by, for instance, gluing a connector on the wafer sur-
face. The structures were made following the scheme in Fig. 4.
First, a trench was etched in the wafer using the techniques for
the fabrication of buried channels, as described in [26], [29],
[30] Fig. 4(a). The trench was square-shaped, 50x 50 pm, had a
width of 4 ;sm and a depth of 40-50 pem. It was filled by growing
LPCVD silicon-rich silicon nitride Fig. 4(b). The silicon ni-

Fig. 3. Schematic view of a buried PS layer.
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Fig. 4. Process scheme for fabrication of the buried PS layers.

tride inside the area surrounded by the trench was subsequently
etched away Fig. 4(c). The silicon nitride at the back of the wafer
was also removed and 750 nm of aluminum was evaporated. The
Al was annealed for 30 min in a water-vapor-rich atmosphere at
450 °C. The wafers were etched in 5% HF at alternatingly high
(3 V versus Ag/AgCl) and low (0 V versus Ag/AgCl) poten-
tial Fig. 4(d)—(f). The result is shown in Fig. 5. In this figure, a
cross section of a silicon nitride pipe containing one layer PS is
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Fig. 5. Cross section of a buried PS layer.

shown. The buried layer is created by first etching at 3 V versus
Ag/AgCl for 10 min, then at 0 V for another 10 min, and sub-
sequently etching at 3 V for 10 min. Unfortunately, most of the
PS was lost during the breaking of the wafer.

For the experiment of Fig. 5, the trench was not completely
filled with silicon nitride, because this takes a long time. There-
fore, when etching the silicon nitride in the area surrounded by
the trench, the silicon nitride in the corner is etched open, and
during electrochemical etching, holes appear at the wafer sur-
face [30]. This will not happen when the trench is completely
filled. As in the conventional version, multiple layers can also
be etched.

B. Measurement of Pore Sizes

The pore sizes of the PS proved to be very difficult to mea-
sure. The most common techniques to determine pore size are
transmission eectron microscope (TEM) [13] or adsorption
isotherm [22], [23] measurements. Other methods include
mercury porosimetry [31], [32] and the use of (field emission
gun) scanning electron microscope (FEG)SEM pictures. For
measuring adsorption isotherms, much material is needed (in
the order of grams), and since we only have very small amounts
of PS, this technique is not usable for the MW Cs. The same
holds for the mercury porosimetry. Because for TEM a very tiny
sample is enough to do reliable measurements, and the resolution
of the FEGSEM is high enough to reveal the pores (as opposed to
anormal SEM), we used TEM and FEGSEM techniques.

1) TEM: InaTEM, electrons are passed through the sample
and detected on a fluorescent plate. The light parts of the image
show a high electron flux through the sample, whereas the
dark parts show a low electron flux. For TEM measurements,
very thin samples transparent for the electrons are needed.
For making these samples, we used a focused ion beam (FIB)
etcher (FEI 2000), normally used to modify integrated circuits
on chips. The specimens were made as follows: a channel
coated with a layer of PS was made by first etching for 15 min
at 3 V versus Ag/AgCl and afterwards for 5 min at 0.0, 0.1,
or 0.2 V versus Ag/AgCl. The wafers used were the same as
those used for making the MW uCs. After etching the channel

bY8kK 4596

Fig. 6. TEM picture of PS.
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Fig.7. Schematic drawing showing a branched pore. The diameter of the pores
measured using TEM may be the space taken up by a pore and its branches.

the wafer was cut perpendicular to the channel into pieces of
approximately 30-40 -pm wide. These were glued to a copper
horseshoe-shaped TEM grid and mounted in the FIB. In the
FIB, most of the PS was removed, leaving a very thin tapered
wall of approximately 47-nm thickness at the top (estimated
from EELS measurements) and 200 nm at the bottom, standing
in the middle of the channel. The lowest thickness, although
thin enough to make pictures, was still too thick to be able to
measure pore sizes reliably. Because etching with a FIB is a
physical process, the pore size of the PS is not affected.

In Fig. 6, a TEM picture of PS is shown. From this picture,
we estimated an average pore size of 13.4 +4 nm by measuring
the width of 10 light areas which we assume to be pores. It is,
however, impossible to decide whether the dark colored areas
are really the pores or consist of pores and short branches, as
indicated in Fig. 7, so the value determined in this way only
gives an upper limit of the pore size.
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Fig. 8. FEGSEM pictures of PS etched in 5% HF at potentials of: (a) 0.0 V; (b) 0.1 V; and (c) 0.2 V versus Ag/AgCl.

2) FEGSEM: In a FEGSEM, the imaging electrons are gen-  locity distribution of the electrons is narrower. The electron beam
erated from a sharp tip instead of being emitted from a glowing is also finer because of the small size of the electron source [33].
coil. Because the temperature of the tip is much lower, the ve- The fine electron beam allows the use of a lower accelerating
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TABLE 1
PORE DIAMETERS AS A FUNCTION OF APPLIED POTENTIAL
Applied potential mean pore diameter (nm) | o,, (nm)
(V vs Ag/AgCl)
0 6.6 0.95
0.1 7.5 0.92
0.2 7.2 1.5
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Fig. 9. A sieve can be made by etching through two closely separated holes
and gluing a connector to the resulting structure.

voltage, which results in less penetration in the sample. There-
fore, the FEGSEM can achieve a much higher resolution than a
conventional SEM (0.8—1.2 nm; maximum obtainable resolution
with SEM is 3—4 nm).

FEGSEM pictures were taken of PS samples etched in 5%
HF using potentials of 0.0, 0.1, and 0.2 V versus Ag/AgCl. Ex-
amples are shown in Fig. 8. Using a marking gauge, we mea-
sured the diameter of ten pores from FEGSEM pictures of sam-
ples etched at the different potentials. The results are shown in
Table I. This table clearly shows that the pore diameter is only
slightly influenced by the current density in this region. This was
also found by Smith et al. [34], [21]. The fact that pore sizes of
the order of 7 nm were measured supports the suspicion that the
pore sizes measured from the TEM sample correspond to the
widths of the pores plus the branches, as shown in Fig. 7.

IV. POTENTIAL APPLICATION OF MW uCs

MW Cs can be used in a number of applications. A device
that directly comes to mind is a sieve for the separation of very
small particles. It can be made using the “conventional” tech-
nique by etching through two closely placed holes (Fig. 9). First
two unconnected cusps that are not connected to each other are
etched at a high current density. After that, the current density
is lowered and PS is formed. The pore size can be controlled
by the current density. Subsequently, the current density is in-
creased and a cavity connecting the two PS sieves is formed.
After etching, the sieve structure the pore size of the PS can be
decreased by growing a layer of for instance silicon nitride on
the PS surface [25], or oxidizing the PS. If necessary, the pore
size can be increased by chemical etching in HF solution with
or without an oxidizing agent [35], [36].

The surface properties of the PS can also be altered by at-
taching silanes with certain end groups. For instance, a silane
with a -CF3 end group will decrease the surface energy of the
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Fig. 10. Sieve made from a buried PS structure.

PS. Finally a plastic holder for two capillaries can be glued to
the structure.

The structure shown in Fig. 9 will be very fragile and difficult
to make and handle. A better sieve can be made using the buried
technique. Part of the wafer is removed by etching in a KOH so-
lution, to yield eventually the structure shown in Fig. 10. Work
is currently in progress to investigate the feasibility of this de-
sign. A sieve also offers a new way to measure the pore size:
by forcing particles with known diameters through the sieve the
pore sizes can be determined.

V. CONCLUSION

Two types of MW nCs have been constructed in a one-run
multistep process by etching p-type silicon anodically in an HF
solution and switching the potential back and forth from a high
to a low value. The dimensions of the channels and the number
of free-standing walls can easily be varied by varying the dif-
ferent etching times and the number of times the potential is
switched. We encountered considerable problems concerning
the mechanical stability of the membrane in the “conventional”
structures. The “buried layer” is more stable because the porous
layer is attached to an immovable structure. The pore size of the
PS was approximately 7 nm, as estimated from FEGSEM pic-
tures.
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